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Abstract. Spatial heterogeneity in terrestrial ecosystems compromises the accuracy of eddy covariance measurements. An1

example of heterogeneous ecosystems are temperate agroforestry systems, that have been poorly studied by eddy covariance.2

Agroforestry systems get an increasing attention due to their potential environmental benefits, e.g. a higher carbon sequestra-3

tion, enhanced microclimate and erosion reduction compared to monocropping agricultural systems. Lower-cost eddy covari-4

ance setups might offer an opportunity to reduce this bias by allowing for more spatial replicates of flux towers. The aim of5

this study was to quantify the spatial variability of carbon dioxide (FC), latent heat (LE) and sensible heat (H) fluxes above6

a heterogeneous agroforestry system in northern Germany using a distributed network of three lower-cost eddy covariance7

setups across the agroforestry systems. Fluxes from the three towers in the agroforestry were further compared to fluxes from8

an adjacent monocropping site. The campaign took place from March 2023 until September 2024. The results indicated that9

the spatial variability of fluxes was largest for FC, attributed to the effect of different crops (rapeseed, corn and barley) within10

the flux footprints contributed to the measured fluxes. Differences between fluxes across towers were enhanced after harvest11

events. However, the temporal variability due to the seasonality and diurnal cycles during the campaign was larger than the12

spatial variability across the three towers. When comparing fluxes between the agroforestry and the monocropping systems,13

weekly sums of carbon and evapotranspiration fluxes followed similar seasonality, with peak values during the growing season14

of -50 g C m−2 week−1 and 40 mm week−1, respectively. The variation of the magnitude depended on the phenology of the15

different crops. The effect size, which is an indicator of the representativeness of the fluxes across the distributed network of16

three eddy covariance towers against only one, showed in conjunction with the other results that the spatial heterogeneity across17

the agroforestry was better captured by the network of three stations. This supports previous findings that spatial heterogeneity18

should be taken into account in eddy covariance studies, and that lower-cost setups may offer the opportunity to bridge this gap19

and improve the accuracy of eddy covariance measurements above heterogeneous ecosystems.20
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1 Introduction22

The eddy covariance (EC) technique is the central approach to measuring the exchange of energy, trace gases and momentum23

between terrestrial ecosystems and the atmosphere (Baldocchi, 2014). The EC technique has been established as a standard24

method within the scientific community when rapid-response instruments, capable of measuring wind speed, temperature, and25

gas concentrations over the major frequency ranges of the turbulent energy spectrum became commercially available (Rebmann26

et al., 2012; Wohlfahrt et al., 2009). These instruments provided the capability to measure the exchange of energy and matter27

between the land surface and the atmosphere, driven by eddies of diverse sizes and frequencies (Kaimal and Finnigan, 1994).28

At a majority of flux sites, a single EC station is installed (Hill et al., 2017) and measurements are made based on the29

ergodic hypothesis. The ergodic hypothesis states that covariances (fluxes) calculated over the time domain are equivalent to30

covariances calculated over the spatial domain (Higgins et al., 2013). The measured turbulent fluxes and carbon and water31

balances, when integrated over a defined time interval, are representative of the tower footprint area corresponding to the32

averaging interval (Vesala et al., 2008). This is true for homogeneous sites where the spatial representativeness of fluxes33

within the ecosystem of interest is guaranteed with a high degree of confidence (Hurlbert, 1984). However, these conditions of34

homogeneity are often not met in many ecologically and socioeconomically interesting sites, such as mixed forests, wetlands,35

urban forest interfaces or small-scale farmlands (Finnigan et al., 2003; Hill et al., 2017).36

Agroforestry (AF) systems are an example of heterogeneous agroecosystems. They combine trees and crops on the same37

agricultural land in order to benefit from the presence of trees on the land (Veldkamp et al., 2023; Kay et al., 2019). These38

systems offer several benefits, including the potential to prevent wind erosion over crops (van Ramshorst et al., 2022; Böhm39

et al., 2014), improve soil fertility (Kanzler et al., 2021), or reduce water loss through evaporation in crops (Kanzler et al., 2019).40

Short Rotation Alley Cropping systems, a type of agroforestry, represent an alternative land use practice with the potential to41

increase carbon sequestration and improve water use efficiency (WUE) in comparison to conventional monocropping (MC)42

agriculture (Markwitz et al., 2020; Veldkamp et al., 2023). These AF systems consist of alternating rows of trees and crops.43

The trees employed in these systems are typically fast-growing species, such as poplar (Populus) or willow (Salix), and are44

harvested in cycles of 5-6 years for biomass production. Crops are cultivated in an annual rotation.45

The spatial configuration of the AF system influences the wind flow regimes within the ecosystem, thereby affecting the46

development of turbulence. In many cases, such as over tall vegetation, EC measurements are made within the roughness sub-47

layer (RSL), which is, by definition, the atmospheric layer whose dynamics are influenced by the roughness elements and is48

located below the inertial sub-layer (Katul et al., 1999). At the AF, the trees act as an effective wind barrier (van Ramshorst49

et al., 2022), thus modifying the RSL, creating internal boundary layers (Markwitz, 2021), and changing the characteristics of50

turbulence over the field. In addition, the alternation of trees and crops with differing phenologies and canopy heights creates51

a heterogeneous distribution of carbon and water vapor sources and sinks. This spatial variability is likely to have an impact52
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on the measured fluxes, as shown by other authors who have studied the spatial variability of fluxes over different ecosystems,53

such as pine forest (Katul et al., 1999; Oren et al., 2006) or managed grassland (Peltola et al., 2015).54

The location of the EC station within a land use system has been demonstrated to potentially introduce a bias in the measured55

fluxes (Chen et al., 2011), indicating that a single EC station may not be sufficient to properly account for the spatial variability56

of fluxes induced by landscape heterogeneity (Katul et al., 1999). The high cost and labor intensity of deploying an EC station57

are the main reasons for the lack of spatial replicates of EC measurements in many studies (Hill et al., 2017). The infrared58

gas analyzer (IRGA), the crucial component to measure trace gases, typically accounts for a large proportion of the total59

installation costs associated with an EC station. Lower-cost EC (LC-EC) setups represent a potential solution to the spatial60

replication problem of EC measurements, as several EC stations could be deployed for the cost of a single conventional station.61

LC-EC employ a more economical infrared gas analyser and a sonic anemometer, though these instruments necessitate more62

rigorous post-processing corrections. Notably, previous studies have demonstrated that LC-EC setup can yield comparable63

results to those of conventional EC (CON-EC) setups. Hill et al. (2017) compared a custom-built LC-EC setup for CO2 and64

H2O measurements with a CON-EC, with very good agreement in CO2 and H2O fluxes. In addition, a different LC-EC setup for65

H2O flux measurements was compared with a conventional setup Markwitz and Siebicke (2019), resulting in good agreement66

in H2O fluxes. Furthermore, another version of the LC-EC setup deployed in Hill et al. (2017) was extensively validated in the67

studies of Callejas-Rodelas et al. (2024) and van Ramshorst et al. (2024), with very good agreement in CO2 fluxes and good68

agreement in H2O fluxes.69

The LC-EC setups can allow for a higher degree of spatial replication of EC and support conventional EC setups. In addition,70

they provide a powerful tool for the verification of carbon and water balances in the agricultural and forestry sectors in devel-71

oping carbon credit markets (Trouwloon et al., 2023). However, the increased uncertainty associated with these setups must be72

taken into account when calculating balances of energy, carbon, or other variables, and when comparing different land uses.73

One of the main differences between LC-EC and CON-EC setups is the spectral response of the sensors. The LC-EC setups74

used in the Callejas-Rodelas et al. (2024), Cunliffe et al. (2022), Hill et al. (2017) and van Ramshorst et al. (2024) studies were75

characterized by a slower frequency response in CO2 and H2O measurements, which induces a higher spectral attenuation in76

the high-frequency range of the turbulent energy spectrum, compared to CON-EC. The higher attenuation introduces a greater77

degree of uncertainty when applying spectral corrections, as observed by Ibrom et al. (2007) and Mammarella et al. (2009),78

among others.79

The impact of landscape heterogeneity within a AF system on turbulence, latent heat flux (LE), sensible heat flux (H) and80

carbon dioxide flux (FC) remains to be examined. Markwitz and Siebicke (2019) and Markwitz et al. (2020) conducted evap-81

otranspiration (ET) measurements across multiple AF and MC systems in Northern Germany; however, their measurements82

were not replicated within a single site. In contrast, in the study of Cunliffe et al. (2022) a total of eight LC-EC setups were83

deployed in different locations across a landscape of ecological interest (Cunliffe et al., 2022). The objective of this study was84

to capture the heterogeneity of CO2 and ET fluxes across a semiarid ecosystem, with low magnitude of both CO2 and ET85

fluxes. To the best of our knowledge, replicated measurements in heterogeneous agroforestry systems are so far lacking.86
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In the present study, a network of three LC-EC setups was deployed, analogous to those utilized in the studies of Callejas-87

Rodelas et al. (2024), Cunliffe et al. (2022) and van Ramshorst et al. (2024), above an AF site, and one additional LC-EC setup88

above an adjacent MC site in northern Germany. To the best of our knowledge, this was the first time a distributed network of89

EC towers has been installed above a temperate agroforestry system. With one and a half years of concomitant flux data from90

the four EC setups, the objective was to quantify the spatial and temporal variability of FC and LE, as well as the statistical91

effect of the increased spatial replication of EC measurements above a heterogeneous site. According to Hill et al. (2017), it92

is possible to estimate the sampling variability and total uncertainty for an ecosystem with independent spatial replication of93

EC measurements. This allows for the estimation of the effect size (see Section 2). The present study tested the hypothesis that94

the increased uncertainty inherent to the use of slower-frequency response sensors in EC measurements can be counteracted95

by the improvement of spatial replication of EC, which increases its statistical robustness. The objectives of this study were96

threefold: (i) to quantify the spatial and temporal variability of turbulent fluxes and parameters above AF; (ii) to calculate the97

effect size of the experimental site, following Hill et al. (2017); and (iii) to compare the ecological functioning of the AF to the98

MC in terms of carbon and ET balances.99

2 Methods100

2.1 Site description101

The measurements were conducted from 1 March 2023 to 19 September 2024 at an agroforestry system located in Wendhausen102

(Lehre), Lower Saxony, Germany (52.63◦ N, 10.63◦ E ). Elevation above sea level is 80 m. The field is divided into two distinct103

systems: an AF system in the north and a MC system in the south (see Fig. 1). The AF system covers an area of 17.3 ha and the104

MC covers an area of 8.5 ha. The crops cultivated within both systems kept a similar distribution from west to east. In 2023,105

rapeseed was cultivated at the western side, barley at the eastern side, and corn at the center (Fig. 1a). In 2024, rapeseed was106

cultivated at the eastern side, barley at the center, and corn at the western side (Fig. 1b). The management of the crops was107

similar at both AF and MC sites and crops were fertilized. The mean long-term annual precipitation is 617 mm, and the mean108

annual air temperature is 9.9 ◦C, for the reference period 1981-2010 at Braunschweig airport ((DWD, 2024)). The soil at both109

AF and MC sites was classified as a Clay Cambisol, with an organic carbon (SOC) content of 5.8 kg C m−2 at the MC and110

and 6.75 kg C m−2 at the AF. Additionally, the soil bulk density was determined as 1.0 g cm−3 at both AF and MC (Veldkamp111

et al., 2023). Soil characteristic were last measured in 2019.112

The harvest of rapeseed, barley and corn in the 2023 campaign season occurred on 13 July, 22 August and 26 and Septem-113

ber. The harvest of rapeseed, barley and corn in the campaign of 2024 took place on 15 July, 5 August and 13 September,114

respectively. In 2024, rapeseed did not grow well and a mulch cut was carried out, therefore the eastern part of the field was115

covered by a combination of grasses, bare soil and mulch. Canopy height was estimated from pictures taken during field visits.116

The maximum height attained by the crops at the peak of their development stage was around 1.5 m for rapeseed, 2.5 m for117

corn and 1.3 m for barley. The trees present at the AF system are fast-growing poplar (Populus nigra × Populus maximowiczii)118

and are typically harvested every 4 to 5 years. The most recent harvest of these trees occurred in 2019. Trees grew from around119
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4.0 m till 5.5 m on average across the measurement period. Further details on the site are provided in Callejas-Rodelas et al.120

(2024).121

2023

(a) EC-AF1
EC-AF2
EC-AF3
EC-MC
AF
MC
Corn
Barley
Rapeseed
Nettle fiber
Tree alleys

© Google 2024

2024

(b)

© Google 2024

Figure 1. Satellite view and land cover classification of the experimental site for 2023 (a) and 2024 (b), together with the location of the

EC stations (blue diamond for EC-AF1, orange diamond for EC-AF2, black diamond for EC-AF3 and black circle for EC-MC). The area

bordered red corresponds to the AF system and the area bordered blue to the MC system. Figure created with QGIS v. 3.22, aerial map by

Google Satellite Maps. © Google 2024.

2.2 Experimental setup122

Measurements were made at four EC stations, one located at the MC site and three located at the AF site (Fig. 1). The stations123

are designated as MC, AF1, AF2 and AF3. Each station was equipped with a complete set of meteorological sensors and a124

LC-EC setup (see Table 1 in Callejas-Rodelas et al., 2024). The measured meteorological variables were air temperature (TA),125

relative humidity (RH), atmospheric pressure (PA), precipitation (P), global radiation (SW_IN), outgoing shortwave (SW_OUT)126

and longwave radiation (LW_OUT), and net radiation (NETRAD. The EC measurement heights were 10 m above ground for127

AF1, AF2 and AF3, and 3.5 m for MC. Only one photosynthetic active radiation (PPFD_IN) sensor was installed at AF1,128

and two barometers for atmospheric pressure measurements were installed at AF1 and AF2. All the stations were equipped129

with two soil heat flux plates to measure soil heat flux (G) at 5 cm depth. Only one soil heat flux plate was installed at AF3.130

Radiation sensors were placed in a beam facing south at 9 m height at AF1, AF2 and AF3 and at 3 m height at MC. TA and RH131
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measurements were taken at 2 m height at all stations. Meteorological data were recorded on CR1000X dataloggers (Campbell132

Scientific Inc., Logan, UT, USA).133

The LC-EC setups consisted of a three-dimensional sonic anemometer for wind measurements (uSonic3-Omni, METEK134

GmbH, Elmshorn, Germany) and a gas analyzer enclosure. The enclosure consisted of an IRGA for CO2 mole fraction mea-135

surements (GMP343, Vaisala Oyj, Helsinki, Finland), and a RH capacitance cell for RH measurements (HIH-4000, Honeywell136

International Inc., Charlotte, North Carolina, USA) and was installed at the bottom of the tower. Air was drawn through a137

9 m tube at the AF stations and 2.5 m tube at the MC station. Two temperature sensors were installed, one inside the IRGA138

measuring cell and one inside the enclosure; and two pressure sensors, one to measure differential pressure inside the enclosure139

and another to measure absolute pressure inside the IRGA measuring cell. Measurements from all components were recorded140

at 2 Hz frequency on a CR6 datalogger (Campbell Scientific Inc., Logan, UT, USA). A more detailed description of the setup141

can be found in Callejas-Rodelas et al. (2024).142

The GMP343 sensors were calibrated in February 2023 and February 2024. Frequent inspections were performed to clean143

the tubing, replace filters, measure flow rate, and clean the lens of the GMP343. The nominal flow rate was 5.0 L· min-1 at144

all AF stations, with some drops due to filter clogging, and 2.2 L· min-1 at the MC before March 14th 2023 and 5.0 L· min-1145

thereafter, due to the replacement of the pump by a more powerful one.146

During the study period, there were generally large percentages of missing data. Missing data were either short gaps (a few147

30-minute periods or a few hours) caused by data filtering during the quality control after flux processing (see Section 2.3.3), or148

longer gaps (hours to a few days) due to power outages during the winter, mostly at night, at all stations. Due to other technical149

problems, there were few larger gaps at some stations, in particular a gap of three months from mid-July to early October 2023150

at AF3, for FC and LE.151

Although generally recommended in EC studies (Aubinet et al., 2012), no storage terms were considered in the calculation152

of FC and LE because no concentration profiles were installed at the stations.153

2.3 Flux computation154

2.3.1 Pre-processing155

Data processing prior to flux calculation included (i) the calculation of CO2 dry mole fraction measurements from the CO2156

molar density provided by default by the instrument, using some sensor-specific parameters and the observed values of pressure157

and relative humidity in the measurement system (Callejas-Rodelas et al., 2024); and (ii) the calculation of the H2O dry mole158

fraction from relative humidity, temperature and pressure measurements inside the measurement cell using the derivation of159

Markwitz and Siebicke (2019). More details on the pre-processing steps are given in Callejas-Rodelas et al. (2024) and van160

Ramshorst et al. (2024).161
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2.3.2 Flux processing162

H, LE, FC and momentum flux were calculated using the EddyUH software (Mammarella et al., 2016) in its Matlab version163

(MATLAB®R2023a, The Mathworks, Inc., Natick, MA, USA). Raw data were de-spiked using limits for absolute differences164

between consecutive values. Detrending was performed by block averaging. Wind coordinates were binned into eight sectors165

and rotated according to the planar fit correction procedure of Wilczak et al. (2001). Time-lag optimization was performed166

through cross-covariance maximization, using predefined windows of 2 to 10 s for CO2 and 2 to 20 s for H2O (Callejas-167

Rodelas et al., 2024). Low-frequency losses were corrected after Rannik and Vesala (1999) and high-frequency losses after168

Mammarella et al. (2009). The latter is based on the determination of the time response of CO2 and H2O separately, calculated169

from measured co-spectra. In the case of CO2 the time response determined by the experimental method was similar to the170

nominal time response of 1.36 s calculated in Hill et al. (2017) for the GMP343. This time response was used for all flux171

calculations for all the three towers. In the case of H2O the time response was estimated by a exponential fit as a function of172

relative humidity. Data quality was flagged from 1 to 9 following Foken et al. (2005).173

2.3.3 Filtering and gap filling174

Fluxes were filtered using data with quality flags < 7 to avoid periods with poorly developed turbulence (Foken et al., 2005).175

Outliers were removed using a running median absolute deviation (MAD) filter, based on the approach by Mauder et al. (2013),176

with a window of two weeks. The q parameter in Eq. (1) of the paper by Mauder et al. (2013) was set as 7.5. The MAD filter177

was iterated three times over each time series. Hard upper and lower limits were applied afterwards to remove any additional178

outliers not detected by the MAD filter. Values outside the ranges from -100 W m−2 to 700 W m−2 for H, from -20 W m−2179

to 700 W m−2 for LE, and from -55 µmol m−2s−1 to 55 µmol m−2s−1 for FC, were discarded. Additional hard limits were180

applied specifically to winter (November to February) and transition periods (March and October) separately. The aim was to181

avoid outliers that went through the previous filters which might bias the application of the gap-filling algorithms. For LE and182

H, these limits were of 50 W m−2 during winter, and 100 W m−2 in March and October. For the FC, these limits were ±183

10 µmol m−2 s−1 during winter, and ± 15 µmol m−2 s−1 in March and October. Finally, a friction velocity (USTAR, m s−1)184

filter was applied to remove periods with non-existent or weak turbulence. The filter of USTAR was applied using REddyProc185

(Wutzler et al., 2018), which removed values based on a USTAR threshold calculated as the maximum of the seasonally derived186

USTAR values. These seasonal values were calculated based on Papale et al. (2006). The average USTAR thresholds for the187

stations were 0.21, 0.21, 0.18 and 0.16 m·s−1 for AF1, AF2, AF3 and MC, respectively.188

The total available data before filtering accounted for 63.4 % (AF1), 80.0 % (AF2), 76.2 % (AF3) and 61.5 % (MC) for189

FC and LE, and 85.7 % (AF1), 86.0 % (AF2), 83.1 % (AF3) and 75.9 % (MC) for H, relative to the duration of the whole190

measurement campaign. These gaps were due to instrumental or power failure. After filtering, the available data accounted for191

36.5 % (AF1), 44.8 % (AF2), 31.3 % (AF3) and 29.2 % (MC), for FC; 41.6 % (AF1), 50.1 % (AF2), 36.1 % (AF3) and 38.5192

% (MC) for LE; and 61.4 % (AF1), 60.0 % (AF2), 56.4 % (AF3) and 52.3 % (MC) for H. Additional gaps in filtered data were193

introduced by rejecting data.194
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Meteorological data were gap-filled at the 30-minute time scale in order to provide complete time series for the variables195

acting as predictors for the flux gap-filling, with slight differences in the procedure for the different variables of interest. Short196

gaps of up to one hour were filled using linear interpolation, except for P. Missing data at the AF1 station that were available197

at the MC station, were filled using linear regression models using as predictors the data from the MC, and viceversa. Missing198

data at AF2 and AF3, but available at AF1, were filled using a similar procedure with AF1 as the reference. Finally, P, TA,199

RH, vapor pressure deficit (VPD), SW_IN, wind speed (WS) and wind direction (WD) were filled at the stations using ERA5-200

Land re-analysis data (Muñoz-Sabater et al., 2021) as predictors, following the approach implemented in Vuichard and Papale201

(2015). Linear regression models were derived from the ERA5-Land data and the station data, using the library pylr2 in Python.202

The coefficients (slope and intercept) from the linear models were used to calculate the missing values. PPFD_IN was filled203

based on global radiation (SW_IN), by multiplying SW_IN by the average ratio between PPFD_IN and SW_IN for the available204

periods at the site. P was filled by multiplying the ERA5-Land data by the ratio between the station data and the re-analysis205

data, as done in Vuichard and Papale (2015). Possible inaccuracies resulting from this replacement did not contribute to an206

additional bias in the gap-filled flux time series, as precipitation was not used for gap-filling purposes. A quality flag was207

developped for meteorological data, with 0 being measured data, 1 being interpolated data, 2 being data filled using the nearby208

station as a reference, and 2 being data filled with ERA5 as a reference.209

Gaps in the flux time series were filled using a double-step procedure, analogous to the approach applied in Winck et al.210

(2023). Short gaps were filled using the Marginal Distribution Sampling method (Reichstein et al., 2005) with the online211

version of the REddyProc package (Wutzler et al., 2018). Short gaps were considered by taking the filled data with quality212

flags of 0 (originally measured data) or 1 (highly-reliable filled data). Subsequently, the remaining gaps (flagged with 2 or 3213

in REddyProc) were filled using a machine learning (ML) tool based on the Extreme-Gradient-Boosting (XGBoost) algorithm214

(Chen and Guestrin, 2016). The code was adapted from Vekuri et al. (2023) to include H, LE and FC. The predictor variables215

of the model were the previously filled TA, VPD, SW_IN, WS and WD. The inclusion of WD followed the recommendation216

of Richardson et al. (2006) to account for the heterogeneity of the site, with different land covers depending on wind sectors217

potentially contributing to flux variability. A quality flag was developped for flux variables, being 0 measured data, 1 data filled218

with REddyProc, and 2 data filled with XGBoost. There were two very long gaps, one for AF3 during summer 2023 (mid219

July until beginning of October) and another for AF1 during winter 2023/24 (beginning of December 2023 until beginning of220

March 2024), besides gaps of few days duration. Because such long gaps would induce very large uncertainty in any gap-filling221

method, the analysis considered only measured data and gap-filled data for gaps not exceeding two weeks duration.222

The error in gap-filled fluxes with XGBoost was taken as the root mean squared error (RMSE) of the modelled data. Table223

1 shows the RMSE scores for FC, LE and H for all four stations. RMSE was taken as the error attributed to each individual224

gap-filled 30-minute flux value.225
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Table 1. Root mean squared error (RMSE) of modeled and measured data, for FC, LE and H, for the four stations used in this study. Note

that the error in FC was slightly different across the stations, but the displayed values are similar due to the effect of decimal rounding.

AF1 AF2 AF3 MC

FC (µmol m−2s−1) 2.8 2.8 2.8 2.8

LE (W m−2) 23.2 32.8 19.7 25.7

H (W m−2) 14.5 15.2 13.0 14.1

2.3.4 Footprint calculation.226

A footprint climatology was calculated for all stations, for five different periods considered in the study: (i) growing season227

2023: from March to 13 July 2023, with the latter being the harvest date of rapeseed; (ii) harvest period 2023: from 13 July to228

22 September 2023, with the latter being the harvest date of corn; (iii) winter 2023/24: from 22 September 2023 to 1 March229

2024; (iv) growing season 2024, from 1 March to 15 July 2024, with the latter being the harvest date of the rapeseed; and (v)230

harvest period 2024, from 15 July to 19 September 2024. The footprint climatology was calculated using the Python version231

of the model by Kljun et al. (2015).232

The input data to the footprint model comprised non gap-filled wind data (WS, m s−1, and WD, ◦), roughness length (z0,233

m), USTAR, Obukhov length (L, m), the standard deviation of lateral wind speed (V_SIGMA, m s−1), boundary layer height234

(BLH, obtained from ERA5, Hersbach et al. 2023), measurement height (zm, m), displacement height (dh, m) and aerodynamic235

canopy height (ha, m). Only daytime values were selected based on values of SW_IN higher than 10 W m−2. The aerodynamic236

canopy height was calculated during near-neutral conditions (stability parameter ZL ≤ 0.1) based on the procedure by Chu237

et al. (2018). The complete time series of ha were estimated as described in more detail in van Ramshorst et al. (in prep.). This238

allowed for a more comprehensive representation of the roughness effects of a varying canopy, therefore it can be considered239

as a more precise representation compared to the use of a single value representing the average canopy height for the whole site240

for each time step. dh and z0 were estimated as 0.6 and 0.1 times the aerodynamic canopy height, following Chu et al. (2018).241

The mean values of dh were 3.1 m at the AF and 0.6 m at the MC, while the mean values of z0 were 0.5 at the AF and 0.1 m at242

the MC. A thorough discussion on the uncertainties of the footprint model can be found in Section 4.4.243

2.4 Spatial and temporal variability of fluxes and turbulence parameters and effect size244

In order to disentangle spatial and temporal variability of fluxes and turbulence parameters across the site, the data were245

classified in two different ways. Firstly, data were aggregated according to different wind sectors of 30◦ each, and separated246

into five time periods as described in the previous paragraph. Secondly, data were grouped in periods of one week, along the247

whole measurement campaign, without the division into wind sectors. For each of these classifications, coefficients of spatial248

variation (CVs) were calculated and the variance was partitioned into temporal and spatial components.249
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The CVs were defined as follows250

CVx =

[
< [x(t)−X(t)]2 >

1
2

X(t)

]
(1)251

based on Katul et al. (1999) and Oren et al. (2006). X is the spatial average of variable x across the three towers in the AF252

for the respective averaging time interval. Angular brackets (<>) denote the spatial averaging operator and the overbar denotes253

temporal average across all the individual time steps t. This formula was applied to H, LE and FC, and to the standard deviation254

of the vertical wind velocity (W_SIGMA, m s−1), USTAR and WS. The coefficients of variation are dimensionless, normalized255

by the spatial average of variable x, such that they can be compared for different variables. Lower limits were set for some of256

the variables, in order to avoid biasing the coefficients of variation by some very low fluxes in the denominator of Equation 1.257

These limits were 10 W m−2 for H and LE, ± 2 µmol m−2 s−1 for FC, and 0.5 m s−1 for U.258

The partitioning of the variance into temporal and spatial components was done as presented in Peltola et al. (2015) (Eq. 2259

therein) based on Sun et al. (2010):260

σ2
tot =

m(n− 1)
m ·n− 1

σ̄2
s +

n(m− 1)
m ·n− 1

σ2
t (ξ) = σs + σt (2)261

with m the number of temporal data points, n the number of measurement locations, σ̄2
s the time average of the spatial variance,262

and σ2
t (ξ) is the temporal variance of the time series of spatial averages ξ. Consequently, the first term on the right hand side of263

the equation is equivalent to the spatial variance (σs), which includes as well the instrumental variance, while the second term264

is equivalent to the temporal variance (σt) (Peltola et al., 2015).265

Furthermore, the effect size (d) was calculated in order to assess the statistical robustness of our distributed network, in266

accordance with the hypothesis of Hill et al. (2017) that the enhanced error observed in LC-EC setups can be counteracted by267

an improved statistical representativeness of the measurements, provided that the effect size is sufficiently large. In our case,268

with the three towers network we calculated d across the three towers inside the AF and between the AF and the MC. d was269

calculated, following Hill et al. (2017), as270

d =
f1− f2

σ
(3)271

where f1 is the flux from ecosystem 1, f2 is the flux from ecosystem 2 and σ is the pooled standard deviation of data from272

both ecosystems. d can be positive or negative. We used daily cumulative sums of gap-filled FC and LE. The value f1 in Eq.273

3 refers to the daily cumulative sums of C (g C m−2) or LE (W m−2) at the AF, as an average across the three stations, while274

f2 corresponds to the daily cumulative sum of C or LE for AF1 or for MC, depending on the case under study. We calculated275

d for two different cases: (i) to test whether fluxes over AF (average across the three towers) were significantly different from276

fluxes over MC, in order to compare both ecosystems; and (ii) to test whether fluxes over AF were significantly different from277

fluxes from the reference tower AF1, in order to compare the increase in statistical robustness of the distributed network to the278

hypothetical case in which only one station was installed at the AF. AF1 was selected as the reference tower because it was the279

oldest running tower on site, having been in operation since 2016. σ was calculated as in Hill et al. (2017)280

σ =

√
(n1− 1)σ2

1 + (n2− 1)σ2
2

n1 + n2− 2
(4)281

10

https://doi.org/10.5194/egusphere-2025-810
Preprint. Discussion started: 11 March 2025
c© Author(s) 2025. CC BY 4.0 License.



where σ1 and σ2 are the standard deviations of both datasets being compared, and n1 and n2 are the number of data points in282

each of the datasets. σ was calculated as the error of the daily cumulative sum, from the individual 30-min error in the fluxes283

(see next section). Afterwards Eq. 4 was applied to get the error for the ensemble of stations being compared.284

2.5 Uncertainty of the LC-EC setups285

The uncertainty in FC and LE was considered by assigning an error to each 30-min flux value. This error was propagated286

later on when aggregating data to daily cumulative sums for the effect size calculations. The error was considered differently287

for measured and gap-filled data. In the case of measured data, the error in the 30-min FC and LE was obtained from the288

inter-comparison of LC-EC and conventional EC setups in the studies of Callejas-Rodelas et al. (2024) and van Ramshorst289

et al. (2024). The error was taken as the worst-case slope of the linear regression models between LC-EC and conventional EC290

setups, separately for FC and LE. It was of 5% for FC and 22% for LE, considered as a relative error for each individual flux291

value. It is important to note that the error is a systematic deviation from the conventional EC setup, and no random error was292

considered in these calculations. Therefore, the uncertainty associated with a given flux value is determined by the product of293

this error value and the magnitude of the flux itself. As an example, a FC of 10 µmol m−2 s−1 would be expressed as 10 ± 0.5294

µmol m−2 s−1, and a LE of 100 W m−2 would be expressed as 100 ± 22 W m−2.295

In the case of the gap-filled data, the error was addressed differently for the two gap-filling steps. For the data filled with296

REddyProc, the error was defined as the standard deviation of the data points used for gap-filling (Wutzler et al., 2018),297

provided as an output from the REddyProc processing. In contrast, for the data filled with XGBoost, the individual error in298

the fluxes was assigned as the RMSE of the modelled data (Table 1). The uncertainty in a cumulative sum was then calculated299

using error propagation from the single 30-minute uncertainties to the daily sums.300

3 Results301

3.1 Meteorological conditions302

SW_IN followed a seasonal cycle, with the maximum magnitude observed at the end of June 2023 (daily means above 300 W303

m−2), followed by a radiation intensity decrease, reaching the minimum values in winter close to 0 W m−2, and then again304

increasing until similar maximum values in June 2024 (Fig. 2a). Monthly values of P were large, especially from June to305

December in 2023, and in July of 2024, with values up to 125 mm (Fig. 2d). There were some very dry months, with P sums306

lower than 20 mm, especially from March to June in 2024. Compared to the climatological averages (Table 2), all seasons307

during the measurement period were more rainy than the period 1981-2010, especially during summer and autumn of 2023,308

when the recorded precipitation was more than three times the reference one (272 mm vs. a reference value of 65 mm for309

summer 2023, and 218 mm vs. a reference value of 52 mm for autumn 2023). Only spring 2024 was slightly dryer than the310

climatological reference, with a record of 30 mm of rain instead of 49 mm.311
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Table 2. Measured and reference climatological averages of TA and P by seasons. Measured seasonal values were calculated as averages

across all four stations at the site. Reference values were taken as the seasonal 1981-2010 climatological average from the German Weather

Service (https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/, last accessed 25-09-2024) from the nearby sta-

tion at Braunschweig airport (ID 662).

Season Measured TA (◦C) Measured P (mm) TA reference (◦C) P reference (mm)

Spring 2023 9.1 102.5 9.1 48.7

Summer 2023 18.7 272.3 17.4 65.0

Autumn 2023 11.9 218.5 9.8 52.0

Winter 2023/24 4.3 198.0 1.7 46.7

Spring 2024 11.8 30.1 9.1 48.7

Summer 2024 18.6 165.8 17.4 65.0

TA followed a seasonal cycle, with the lowest values in winter (daily means between 0 and 10 ◦C, with occasional lower312

values) and the highest values in July and August of both 2023 and 2024 (daily means around 20 ◦C). TA was slightly larger313

at the MC tower than at the other three AF towers during most of the campaign, with enhanced differences in summer and314

very small differences in winter. The mean TA during the campaign was 12.86 ◦C at the MC, while it was 12.49 ◦C at the AF.315

The three AF stations showed very similar TA. TA was higher in all seasons compared to the climatological averages (Table316

2), except in spring 2023 in which both values were similar (9.1 ◦C). Summer 2023 and summer 2024 were slightly warmer317

(18.7 and 18.64 ◦C, respectively) than the reference value (17.4 ◦C). Autumn 2023, winter 2023/24 and spring 2024 were318

clearly warmer than the climatological averages, with 11.9, 4.3 and 11.8 ◦C vs. the reference values of 9.8, 1.7 and 9.1 ◦C,319

respectively. The absolute difference between measured and historical data was largest in winter.320
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Figure 2. Time series of daily mean meteorological parameter and the cumulative sum of precipitation across the measurement campaign:

(a) global radiation (SW_IN), (b) air temperature (VPD), (c) vapor pressure deficit (VPD) and (d) monthly sums of precipitation (P). SW_IN

and P were considered as common to all the stations, because the size of the site is small enough to assume homogeneity in these parameters,

whereas TA and VPD were plotted separately for all four stations. Data were filtered for outliers using lower and upper limits, gap-filled as

detailed in Section 2.3.3, and then aggregated to daily values by taking the daily mean for SW_IN, TA and VPD and the daily sum for P.

VPD values also showed a marked seasonality (Fig. 2c). Values were very low in winter, between 0 and 0.2 kPa, and321

increased towards summer in both 2023 and 2024, reaching daily means between 1 and 1.5 kPa. VPD was still relatively large322

in autumn of 2023, with values of around 0.5 kPa. Comparing the four stations, the MC site experienced a larger VPD from323

July to October 2023, while during the rest of the campaign no significant differences were observed across the stations. The324

mean VPD was 0.41 kPa at the MC and 0.4 kPa at the AF as an average of the three stations. The differences between the three325

AF stations were very small.326
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3.2 Footprint climatology327

The seasonal footprint climatology show the 80 % contributions from the different land uses to the fluxes by all four stations328

(Fig. 3). All footprints exhibited larger contributions from the western side of the towers in all periods (growing season 2023,329

harvest period 2023, winter 2023/24, growing season 2024 and harvest period 2024), corresponding to the dominant wind330

direction at the site. For all periods under consideration, the footprint of the MC tower was smaller than for the three AF towers,331

due to the lower measurement height. The three stations at the AF exhibited partially overlapping footprints, with different sizes332

and degrees of similarity depending on the evaluated period. The footprint of the three towers covered approximately four tree333

rows and four crop rows each. The three towers at the AF presented different footprint sizes, with the largest areas being334

covered by AF3, followed by AF2 and finally by AF1. The order was the same in all seasons. The footprint from the MC335

tower covered both the western and eastern fields around the tower, but the contribution was larger from the western part in336

all seasons. For all stations, there were some contributions to the footprints from the areas beyond the AF or the MC fields.337

This was especially remarkable in the case of AF3, which had some contributions from the western side of the field in winter338

2023/24 (Fig. 3c) and from the northern side of the field in both harvest periods of 2023 and 2024 and the 2024 growing season339

(Fig. 3b,d,e). However, the contributions of the areas outside the AF were expected to be negligible regarding the interpretation340

of the results.341

The analysis on specific differences between land covers measured by the different stations revealed variations from season342

to season. In the 2023 growing season, the footprints of AF1, AF2 and AF3 were overlapping the most compared to the other343

seasons (Fig. 3a). At AF1 predominantly four tree strips, corn, barley and the nettle fiber rows were detected. At AF2, the344

footprint encompassed a larger area, covering five tree strips, all three crops (rapeseed, corn and barley) plus the nettle fiber345

was detected. At AF3 the footprint was the most extensive, covering also five tree strips, the three crops and one of the nettle346

fiber strips, plus some areas beyond the AF site was detected. The overlap of the footprints was more intense between towers347

AF2 and AF3. The MC tower detected mostly the corn field, with a small contribution of the rapeseed field.348

During the harvest period in 2023, the footprint size diminished, partially due to a reduced considered period. The footprint349

climatology is a weighted average, hence, a longer evaluated period is likely to extend the footprint area. This lead to a reduction350

in the degree of overlap among the footprints, particularly between AF1 and AF3. AF1 covered three tree strips, corn, barley351

and nettle fiber; AF2 covered four tree strips, only one row of rapeseed, the whole corn field and a small part of the barley352

field; AF3 covered also four tree strips, the whole rapeseed field and part of the corn field. The MC tower covered only part of353

the corn field.354
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Figure 3. Footprint climatologies, calculated from the model of Kljun et al. (2015), for the three towers at the AF and the tower at the MC

(detailed in Section 2.3.4), divided into five different periods: growing season 2023 (a), harvest period 2023 (b), winter period 2023/24 (c),

growing season 2024 (d) and harvest period 2024 (e). The lines plotted in the map represent the 80 % contributing areas to the footprint.

Figure created with QGIS v. 3.22, aerial map by Google Satellite Maps. © Google 2024.
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In winter 2023/24 (Fig. 3c), the footprint size increased again for all stations, enhancing the overlap. However, this enhance-355

ment was not as substantial as the one observed during the 2023 growing season. All crops had been harvested, and only the356

rapeseed had been sown in the eastern part of the field in September 2023 (Fig. 1b), therefore the remarkable features of this357

season are that the footprints of both AF1 and AF2 covered one of the rapeseed field rows, together with the nettle fiber, while358

the footprint of AF3 did not. The other spaces in between tree strips were bare soil during this season. The MC footprint was359

larger than during the other seasons and covered most of the field in the west of the tower and a small part of the rapeseed field360

in the east.361

During the 2024 growing season, the footprints of AF1 and AF2 exhibited an overlap of approximately 50 % of the footprint362

area, while the overlap between AF1 and AF3 was significantly less (Fig. 3d). AF1 covered rapeseed, nettle fiber, part of the363

barley field and only three tree strips; AF2 covered part of the corn field and the barley field, plus four tree strips; AF3 covered364

the whole corn and barley fields and five tree strips. The MC footprint reduced in size compare to the winter period, and was365

mostly covering the barley field in the west of the station. Finally, during the 2024 harvest period, the footprint size reduced366

again for all stations, and so did the overlap (Fig. 3e). AF1 covered only part of the barley field and part of the rapeseed field,367

together with the nettle fiber and two tree strip; AF2 covered most of the barley field and parts of the rapeseed and the corn368

fields, plus three tree strips; and AF3 covered the corn field, part of the barley field and almost four tree strips. The footprint of369

the MC was similar to the 2024 growing season (Fig. 3e) covering mostly the barley field and a minor portion of the rapeseed370

field.371

3.3 Weekly sums of carbon and evapotranspiration372

The weekly cumulative sums of FC (Fig. 4a) exhibited a marked seasonal behavior and similar variability across the four373

towers. The seasonal cycle was characterized by the uptake of carbon (negative values) during the growing season and carbon374

losses (positive values) during winter. The differences were smaller across the three AF towers, with AF1 and AF2 behaving375

more similar. During the 2023 growing season, there was a strong uptake at all stations of around -30/-40 g C m−2 per week,376

from April to September 2023. This was interrupted by the short dry period of three weeks which occurred at the end of May377

and first half of June of 2023 (DWD, 2024) with the AF site turning to a carbon source (measured by AF2) or to a weak carbon378

sink (measured by AF1 and AF3). The uptake was stronger at AF3 until mid June, after which MC showed the strongest uptake379

(-40 to -60 g C m−2 per week) for the rest of the growing season. After the harvest of the rapeseed on 13 July 2023, weekly380

sums reduced in magnitude but were still large at AF1, AF2 and MC (AF3 was missing during this period), and after the harvest381

of the barley on 22 August 2023 the sums reduced notably. From October 2023 to March 2024, the values were positive and382

comparable across all stations, indicating a carbon release from the ecosystems. During the 2024 growing season, the carbon383

uptake was found to be diminished compared to the 2023 growing season. The strongest uptake of around -25 g C m−2 per384

week occurred in July 2024. AF2 and MC showed the strongest uptake during June and July, however, after the harvest of the385

rapeseed on 15 July, the uptake reduced and AF2 and MC changed their sign towards a carbon source, while AF1 and AF3386

still showed negative values. After the harvest of the barley on 5 August 2024, the uptake of AF1 and AF3 reduced even more,387

changing in AF1 towards a carbon source. AF3 kept a CO2 sequestration behavior until the end of the measurement period.388

16

https://doi.org/10.5194/egusphere-2025-810
Preprint. Discussion started: 11 March 2025
c© Author(s) 2025. CC BY 4.0 License.



60

40

20

0

20

W
ee

kl
y 

C 
flu

x 
(g

 C
 m

2 ) (a)

AF1
AF2
AF3
MC

Mar23 Jun23 Sep23 Dec23 Mar24 Jun24 Sep24
Date (mm/yy)

0

10

20

30

40

W
ee

kl
y 

ET
 (m

m
)

(b)

Figure 4. Weekly sums of the net ecosystem carbon exchange as a carbon (C) flux (a) and evapotranspiration (b, ET) measured at the four

stations, across the measurement campaign. Sums were calculated from the gap-filled time series. Missing values correspond to gaps longer

than 2 weeks, which were not considered in the analysis. The horizontal line in sub-plot (a) highlights the zero line, separating the uptake

(negative fluxes) from the emission (positive fluxes). Vertical dashed lines represent, from left to right, the harvest dates of rapeseed (13 July

2023), barley (22 August 2023) and corn (26 September 2023) in 2023; and rapeseed (15 July 2024), barley (5 August 2024) and corn (13

September 2024). Due to the requirement of taking only gap-filled data for gaps up to two weeks of duration, there were some missing weeks

for all stations and two very long gaps, in summer 2023 for AF3 and in winter 2023/24 for AF1.

The weekly cumulative sums of ET (Fig. 4b) also exhibited a strong seasonality in all stations and similar variability across389

them. During the 2023 growing season, there were increasing ET weekly sums from April (values around 10 mm per week)390

until the maximum values attained in July, with a magnitude of 30 mm at AF2, AF3 and MC, and 40 mm at AF1. Afterwards391

there was a progressive reduction in ET especially enhanced after the harvest of the rapeseed on 13 July 2023 and the harvest of392

the corn on 26 September 2023. AF1 showed the highest values until October 2023. Thereafter, all stations showed low values393

coinciding with the winter period, of around 5 mm per week, until March 2024. During the 2024 growing season, weekly ET394

was again progressively increasing at all the stations, until they reached the maximum values of 30 and 40 mm. The increase395

was only interrupted by a reduction in ET in June, more marked at the AF towers. After the peak of the growing season, ET396

reduced especially after the harvest of the rapeseed on 15 July 2024 and the barley on 5 August 2024. The highest values during397

the growing season were found for the MC until July and for AF2 after that, and the reduction in ET after the harvest events398

was more marked in these two stations. AF1 and AF3 kept lower values and exhibited a more similar behavior.399
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3.4 Coefficients of variation, spatial and temporal variance400

3.4.1 Classification in wind direction bins401

The CVs calculated at the half-hourly scale (Eq. 1) were the largest for FC in most of the wind sectors and the evaluated402

periods, followed by the CVs of LE and H (Fig. 5). The CVs of WS, USTAR and W_SIGMA were low in comparison to the CVs403

of FC, LE and H. The lowest variability across wind sectors in all periods was found for W_SIGMA, followed by USTAR and404

WS, with CV values below 0.15 in most of the cases. Within the 2023 growing season, FC showed the largest spatial variability405

in the eastern and southern wind sectors, with CVs above 0.5 and up to 1.2. LE and H showed similar values of between 0.2 and406

0.3, slightly higher for LE (close to 0.4) in the northern wind sectors (330-60◦). During the 2023 harvest period, no CVs of FC407

and LE could be calculated due to the absence of data from AF3, therefore only the variability of H and turbulence parameters408

could be addressed. H showed the largest variability in the northeastern wind sectors (0-150◦), with values of CVs of above 0.2.409

In winter 2023/24, the CVs of FC were the largest in the eastern half (0-180◦), with values between 0.2 and 0.8, while LE and410

H showed similar values between them; in the sectors 180-270◦ the CVs of LE were the largest, with values up to 0.6, followed411

by CVs of FC. For the sectors 270-360◦ the CVs of all variables were smaller than 0.3 and very similar across them. During412

the 2024 growing season, FC showed the largest variability in the eastern (30-180◦) and northeastern sectors (330-30◦), with413

values between 0.4 and 1.7, while the CVs of LE were similar to the CVs of H with a magnitude between 0.2 and 0.4. In the414

western sector (180-330◦), however, the CVs of LE were the largest, with values between 0.4 and 0.5, and CVs of FC were415

similar to the CVs of H. Finally, during the 2024 harvest period, in the eastern sector (0-180◦) the CVs of FC, LE and H were416

very similar, with values between 0.2 and 0.4, and in the western sector (180-360◦) the CVs of LE were slightly larger, between417

0.4 and 0.5, and CVs of FC and H remained similar. Both for FC and LE, both variance values were larger during the growing418

season and the harvest period in both years than during winter, due to the larger magnitude of fluxes. As an overall picture, σs419

was larger than σt in the western and northeastern wind sectors. Due to the scope of this analysis, it is important to remark in420

which wind sectors σs was larger than σt. Looking first at LE (Fig. 5, mid row) σt dominated the variance in all wind sectors421

during the 2023 growing season. During winter 2023/24, σt of LE was larger than σs in all sectors except in the bin 210-240◦,422

when σs was much larger than σt. During the 2024 growing season, σs was larger than σt in the wind sectors of 60-90◦ and423

300-330◦. Finally, during the harvest period in 2024, the spatial component was larger than the temporal one only in the sector424

60-90◦.425

Regarding FC (Fig. 5, bottom row), the picture was different compared to LE, with a higher relevance of the spatial compo-426

nent of the variance. During the 2023 growing season σt dominated all wind sectors except for the bins 60-90◦ and 150-180◦,427

but the values of σs were close to the values of σt in all the eastern sectors. During winter 2023/24, σs was larger than σt in all428

wind sectors except 0-30◦, with the largest difference in the eastern (90-120◦) and southwestern (210-240◦) sectors, and with429

relatively large values in the sectors 120-210◦. During the 2024 growing season, σs was larger than σt in all sectors except430

in the northwestern ones (300-360◦), reaching very large values in comparison to other periods (up to 80 µmol2 m−4 s−2) in431

the eastern half. Finally, during the 2024 harvest period, σs was larger than σt in the sectors 0-60◦ and 150-240◦, while σt432

dominated in the northwestern sectors.433
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Figure 5. (Top row) Coefficients of variation (CVs), calculated after Oren et al. (2006), for FC, LE and H, WS, USTAR, and W_SIGMA; (mid

row) spatial (σs LE) and temporal (σt LE) variance for LE; (bottom row) spatial (σs FC) and temporal (σt FC) variance for FC. Data were

grouped in all cases by wind direction bins of 30◦ each and separated into the five analysis periods (growing season 2023, harvest period

2023, winter 2023/24, growing season 2024 and harvest period 2024) detailed in Section 2.3.4. Due to the two very long gaps in AF1 and

AF3 (see Fig. 4), plus some shorter gaps, there were no data corresponding to the harvest period in 2023 for FC or LE, therefore the sectorial

plots for the variance partition are missing. Note that in the first row, due to the large magnitude of some of the CVs of FC, the variability in

the lines corresponding to the other variables is more difficult to visualize. Note that the scale is different in the circular plots, depending on

the magnitude of what is represented in each season.

3.4.2 Classification in weekly intervals434

The weekly CVs across the measurement campaign were largest for FC, with a large difference to the rest of the variables being435

evaluated (Fig. 6a). The difference was especially remarkable during winter and from March to May 2024. At the beginning of436

the 2023 growing season, in March and April, the CVs of FC were between 0.3 and 2, much larger than the CVs of LE, while437

in May, June and until mid July (when the large gap in AF3 started), CVs of FC and LE were similar, with values between 0.2438

and 0.5, except for a very large value of 10 the first week of June. In the short evaluated winter period, CVs of FC were very439

large in comparison to the other variables, with values up to 3.9, and one very large value of 48. However this value could be440

classified as an outlier because of the larger noise and uncertainty in the winter data. The CVs of LE showed a small variability441
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and were close to H, with values between 0.1 and 0.3. During the 2024 growing season, in March and April the CVs of FC442

were large, with values up to 17 in March, while CVs of LE were between 0.3 and 0.5, and CVs of H between 0.2 and 0.3.443

From May 2024, the CVs of FC were similar to the CVs of LE, with values around 0.5 and slightly lower during the 2024444

harvest period, and followed closely by the CVs of H. During the whole campaign, the CVs of USTAR, and W_SIGMA were445

much lower than for H, LE and the FC, similar as shown in Figure 5, with values below 0.2 across the whole period. However,446

the CVs of ū were similar to the ones of H during the growing season as well as the 2023 harvest period. After summer 2023447

the CVs of ū reduced their magnitude. The CVs of USTAR, and W_SIGMA were the lowest and did not change much during448

the campaign. In general, there was no clear effect of the harvest event on the variation of CVs for all variables.449

With regards to partitioning the variance into its temporal and spatial components, σt was higher than σs for both LE and450

FC (Fig. 6b and 6c) during all the evaluated periods. The highest variance was observed during the end of the growing season451

in both years and during the harvest period in 2024, while the lowest occurred in winter time. During winter, σs and σt were452

very similar for both LE and FC. The spatial variance of LE and FC was largest in the summer months of both years. However,453

the difference between σt and σs changed from LE to FC. In the case of LE, σs was very close to σt from March to August454

2024, being even higher in some weeks, and decreased largely in the harvest period. In the case of FC, σs stayed at very low455

values in comparison to σt during the whole period. The effect of harvest events in 2024 was shown by a lower variance in456

both temporal and spatial components, especially visible in the case of LE for which σs reduced sharply after the harvest of457

the rapeseed in 2024 (Fig. 6b).458

3.5 Effect size and statistical representativeness of the three-towers network459

Figure 7 shows the effect size time series, based on the daily sums, for the comparison of FC and LE across the AF and between460

AF and MC. In the case of the AF evaluation for FC, dAF-FC values were mostly in the range -0.7 to -1.0 in most periods. After461

May in both years, values started to reduce progressively, reaching -1.3. The values were lowest (more negative) of around462

-1.4 in July 2024. With respect to the comparison between AF and MC for FC, the dynamics of dAF-MC-FC were similar to the463

behavior of dAF-FC , with slight differences. The values were always between 0.5 and 1.5, being especially concentrated in the464

range 0.8-1.0 in the periods of February to May 2023, winter 2023/24, and March, August and September of 2024. In both465

summers of 2023 and 2024, dAF-MC-FC was larger with values between 1.0 and 1.5. The maximum values were reached in July466

2023.467

The comparison of LE showed different dynamics (Fig. 7). Regarding the evaluation of dAF-LE, the values were very constant468

at around -1.0 during 2023 and winter 2023/24. In 2024, a higher variability was observed, but reduced magnitudes (less469

negative) as compared to dAF-FC . The magnitudes decreased slightly to -0.7 to -0.8 at the end of the campaign, during the470

months of June, July and September 2024, while August showed again values close to -1.0. With respect to dAF-MC-LE, values471

were in the range 0.7-1.1 most of the time, with a slightly higher variation from March to July 2023. During the 2024 growing472

season, the variability was lower. In general, dAF-MC-LE varied less than dAF-MC-FC during the whole campaign.473
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Figure 6. (a) Coefficients of variation (CVs), calculated after Oren et al. (2006), for FC, LE and H, ū, USTAR, and W_SIGMA (logarithmic

scale); (b) spatial (σs LE) and temporal (σt LE) variance for LE; (c) spatial (σs FC) and temporal (σt FC) variance for FC. The plotted

values are weekly means calculated at 30-min temporal resolution from the flux time series.Vertical dashed lines represent, from left to right,

the harvest dates of the crops in 2023, for rapeseed (13 July 2023), barley (22 August 2023) and corn (26 September 2023); and in 2024, for

rapeseed (15 July 2024), barley (5 August 2024) and corn (13 September 2024). Dashed areas correspond to the 2023 harvest period (grey),

the winter period (yellow) and the 2024 harvest period (purple), for a better comparison with Figure 5. Due to the two very long gaps in AF1

and AF3 (see Fig. 4), plus some shorter gaps, there were no data corresponding to the harvest period in 2023 for FC or LE and only few

weeks of data in the winter period. Note the logarithmic scale in panel (a), introduced due to the large magnitude of some of the CVs of FC

for visualization purposes.
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Figure 7. Time series of the effect size (d) for FC and LE. d was calculated according to Eq. 3, based on the daily sums of FC and LE. Black

filled circles represent the comparison between AF1 and the average of the three stations at the AF (AF1, AF2 and AF3) for the FC. Black

crosses represent the comparison between the average of the three stations at the AF (AF1, AF2 and AF3) and the MC station for FC. Blue

filled circles represent the comparison between AF1 and the average of the three stations at the AF (AF1, AF2 and AF3) for LE. Blue crosses

represent the comparison between the average of the three stations at the AF (AF1, AF2 and AF3) and the MC station for LE. Vertical dashed

lines represent, from left to right, the harvest dates of the crops in 2023, for rapeseed (13 July 2023), barley (22 August 2023) and corn (26

September 2023); and in 2024, for rapeseed (15 July 2024), barley (5 August 2024) and corn (13 September 2024). Dashed areas correspond

to the 2023 harvest period (grey), the winter period (yellow) and the 2024 harvest period (purple), as in Figure 6.

4 Discussion474

4.1 Spatial and temporal variability of FC and LE above the AF system475

Using three distributed EC stations over the same AF system, a small spatial variability in meteorological parameters was476

found, but the spatial variability in CO2 and energy fluxes was larger. The AF site is not very large (19.1 ha) compared to the477

median farm size of 29.4 ha in Lower Saxony (Jänicke et al., 2022). The effect of several rows of trees perpendicular to the wind478

can significantly influence the microclimatic conditions of different areas in the agricultural field, compared to open croplands479

(Kanzler et al., 2019). However, the meteorological conditions measured at the three towers were very similar, probably due480

to the fact that all stations were located within the tree strips, and not in between or outside them and due to the small size481
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of the AF field. The observed variability in FC and LE should therefore not be attributed to the meteorological drivers, but to482

the differences in the footprint areas of the three stations. The footprint climatology of the stations partially overlapped (Fig.483

3), but the most intense flux contributions originated from an area around the towers. Differences in crop development and484

management practices could explain most of the spatial variability of the observed fluxes across the three towers throughout485

the campaign, because of the different crops that were sown in between the tree strips (spatial variability) and the different crop486

distribution from 2023 to 2024 (temporal variability) (Fig. 1).487

The higher spatial variability in turbulent fluxes compared to other turbulence and wind parameters (Fig. 5), especially for488

FC and LE, was found also in the studies of Katul et al. (1999) and Oren et al. (2006). This can be explained by the control489

of stomatal and boundary layer conductances, as well as the more complex nature of sources and sinks for CO2 and H2O490

fluxes (Katul et al., 1999). The larger CVs of FC at the eastern wind sectors (Fig. 5) during all evaluated periods relate directly491

to the footprint climatology differences, because the footprints were the most different at the eastern side of the three AF492

stations (Section 3.2). There was still a relatively large variability in LE and FC, due to the much smaller size of the footprint493

climatology area, which led to less overlapping footprints from the three stations (Fig. 5 and 3), therefore higher. The harvest494

events in 2024 did not seem to affect the CVs (Figs. 5 and 6a) compared to the 2024 growing season.495

The larger temporal variance, compared to spatial variance, for both FC and LE, could be explained by the dominance496

of seasonal and diel patterns of these variables. Spatial variability was important (Sections 3.4.1 and 3.4.2), but it had less497

relevance than the larger seasonal and diurnal variability. Nonetheless, σt was similar to σs in winter for both LE and FC,498

which can be attributed to the dormant state of the ecosystem, leading to small diel variations and therefore small temporal499

variations. In summer 2024, for LE, σs was similar to σt, due to the less overlapping areas caused by a reduction in the500

footprints (Fig. 3) compared to the 2023 growing season, but also to the absence of a fully developed crop in the eastern part of501

the field, because of the bad growth of rapeseed during this season. This caused weaker LE measured especially at tower AF1502

and led to a lower spatial variation.503

Compared to similar approaches in the literature, Peltola et al. (2015) found a paired temporal and spatial variability in CH4504

fluxes measured at three different heights at a tall EC tower and two additional EC stations over an agricultural landscape.505

Hollinger et al. (2004) measured fluxes using two towers with non-overlapping footprints in a forest and found that the tem-506

poral variability was larger, but the spatial disagreement in FC was not negligible, despite the apparent homogeneity of the507

ecosystem studied. Rannik et al. (2006) also compared FC measured from two nearby towers over the same ecosystem, with508

partially overlapping footprints, and found relevant systematic errors in the daytime fluxes attributed to the variability in the509

turbulent flow field caused by the complexity of the terrain. These systematic differences were important to attribute long-term510

uncertainties in the ecosystem C uptake, such as it would happen in the complex AF site of the present study. Davis et al. (2010)511

investigated heterogeneity in FC above an arable land and demonstrated the large imprint of spatial heterogeneity in annual512

balances of C. Moreover, Soegaard (2003) quantified the annual carbon budget of an agricultural landscape by combining513

footprint-weighted fluxes and spatial variability in different crops, demonstrating the large potential of spatial heterogeneity to514

bias annual estimates of fluxes. In the present study, the influence of the different land covers around the towers was detectable,515

except during the winter period, both for FC and LE, but the differences were smaller than expected for different crops with516
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clearly different seasonality. This could be explained by the partially overlapping footprints, as already mentioned, but also to517

the buffering effect caused by the presence of the trees. Trees were assumed to behave similarly across the AF, so their similar518

CO2 and water fluxes attenuated the potentially largest differences in turbulent fluxes that would be expected among the crops519

without trees.520

The weekly cumulative sums of FC and ETacross the campaign (Fig. 4) can be explained by the differences in the pheno-521

logical state of the crops and the management around the towers. These differences can be directly connected to the previously522

explained behavior of the CVs and partitioning of the variance. Spatially replicated experiments demonstrated the potential to523

more accurately estimate the uncertainty in turbulent fluxes, such as applied in Hollinger and Richardson (2005). However, the524

footprint areas of the three stations at the AF in the present study were not homogeneous and they only partially overlap, which525

means that in practice it is difficult to assess the uncertainty for paired observations as in Hollinger and Richardson (2005).526

Conversely, the deployment of three towers provided a more comprehensive dataset compared to the single tower approach,527

and the uncertainty of the AF as a whole could be estimated by calculating the standard deviation of the measured fluxes across528

the three towers. However, the selection of the exact site of the towers in the present study might not have been optimal (Chen529

et al., 2011), since footprints were partially overlapping (Fig. 1 and 3). This was due to logistic constraints that precluded the530

selection of any other location within the AF site, such as in the southernmost part of the field. On the other hand, the purpose531

of the study was to investigate small scale variability in the highly heterogeneous AF, a goal that was generally accomplished.532

Assuming that the trees were growing in a similar way across the whole AF site, the observed variations in weekly sums533

of carbon and ET (Fig. 4) can be attributed to the developmental differences among the crops cultivated around the stations.534

Specifically, the earlier development of rapeseed in 2023 led to an initial carbon uptake at AF3, because the main footprint535

covered rapeseed (Fig. 3a). This aligned with the larger CVs of FC in the eastern side of the field (Fig. 5), and during March536

and April 2023 (Fig. 6a). However, the earlier growth of rapeseed did not result in increased ET in AF3 (Fig. 4b), leading to537

comparable CVs of LE for all wind sectors (Fig. 5). This is because rapeseed can maintain a relatively large carbon uptake538

while using limited water resources (Najibnia et al., 2014). The subsequent development of corn and barley led to similar539

weekly uptakes of carbon at AF1 and AF2, but a larger ET at AF1, leading to a decrease in the CVs of FC and a modest540

increase in the CVs of LE. Besides the partially overlapping footprint (Fig. 3), the reason behind is the different water use541

efficiency among barley and corn, being lower for barley and therefore explaining similar carbon uptake as corn at a higher542

ET (see e.g. Pohanková et al., 2018). After the short drought in May-June, which affected all three stations by reducing both543

carbon uptake and ET due to water stress, weekly carbon uptakes of AF1 and AF2 and weekly ET sums were larger than for544

AF3 until the harvest period. This can be attributed to corn and barley being less present in the footprint area of AF3 (Fig. 3a).545

Corn and barley exhibited a more intense physiological activity, immersed in the growing season, while rapeseed was likely at546

its maturity stage.547

The harvest of rapeseed in 2023 had a negligible effect on the carbon uptake of AF1 and AF2 much, but seemed to have an548

effect on ET, which reduced for both stations. This can be attributed to a period of several precipitation events, low TA and VPD549

(Fig. 2) which reduced both physiological activity and atmospheric water demand. The harvest of barley and corn reduced the550

carbon uptake and ET. Especially the corn harvest had a large impact because it was the main crop in the footprints of AF1 and551
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AF2 (Fig. 3b). After the harvest period, the slightly larger difference between the three stations may be an effect of the larger552

gap-filling uncertainty due to the longer gaps and agrees with an enhanced spatial variance compared to the temporal one (Fig.553

6b and c).554

In 2024, the very dry spring (Table 2) did not affect weekly sums of ET since they were similar to the previous year, but555

affected weekly sums of FC, visible by lower fluxes compared to 2023. In 2024, there was no earlier development of the556

rapeseed as it occurred in 2023, due to the very wet winter conditions. The variability in ET was larger than in 2023 due to less557

overlapping footprints and due to the difference in rapeseed growth (Fig. 3d). The larger carbon uptake at AF2 as well as larger558

ET (Fig. 4) during all the 2024 growing season was due to the influence of barley and partially corn, while AF1 detected only559

part of the barley field and the non-well developed rapeseed (Fig. 3c). Carbon uptake and ET were smaller at AF3 because560

corn developed later, but reached similar values as AF1 once corn started to grow. After the harvest of the rapeseed, AF1 and561

AF2 reduced both their carbon uptake and ET, with AF2 turning into a carbon source. The effect was more intense for AF2,562

explained not by the footprint of AF2 in the rapeseed field (Fig. 3e), but rather by the fact that barley had reached the maturity563

already and there was a strong ecosystem respiration enhanced due to the rainy and wet conditions, as well as a reduced ET.564

Carbon uptake and ET release at AF3, on the other hand, did not detect the effect of the rapeseed harvest, because AF3 was565

not measuring the corresponding portion of the field (Fig. 3e). AF3 kept a large weekly carbon uptake and similar ET due to566

the presence of the corn in its footprint area (Fig. 3). Afterwards, the harvest of barley reduced the uptake of AF1, turning it567

onto a carbon source, and of AF3 as well as ET due to the footprint covered by both stations (Fig. 3e). FC was progressively568

more positive at all three towers until it reached carbon emissions also for AF1 and AF3 around the harvest of the corn, which569

was the main crop in the footprint area of AF3.570

4.2 Differences in FC and ET between AF and MC systems571

The AF site had typically lower air temperature and higher RH than the MC (Fig. 2), because the trees at the AF act as a buffer572

to keep cooler air temperatures and cooler soil resulting in a larger RH. This is pointed out in a review by Quandt et al. (2023).573

The authors stated that during drought events and under drier and warmer climatic conditions, as projected in future climate574

scenarios, the buffer effect of the trees in keeping cooler temperatures and more humid air could potentially be enhanced.575

C uptake and ET release were enhanced at the AF at the beginning of the 2023 growing season, because of the earlier devel-576

opment of the trees and the rapeseed, both present in the footprint of all three AF stations (Fig. 1 and 3a). The MC station was577

measuring mostly the corn field (Fig. 3a). Corn is a crop with a later development compared to barley or rapeseed (Lokupitiya578

et al., 2009; Soegaard, 2003), but typically very productive (Hollinger et al., 2005; Lokupitiya et al., 2016). Therefore, carbon579

uptake was larger at the MC during most of the 2023 growing season after corn started its stronger development phase, later580

than rapeseed and barley. ET, on the other hand, was similar to AF2, indicating a larger water use efficiency. In our study,581

the short dry period in May/June 2023 occurred when the corn was at its highest development stage. Therefore the corn was582

not affected as strongly as the rapeseed and barley, which was in a more advanced development stage. In general the whole583

campaign took place during very wet conditions, which potentially enhanced the ecosystem respiration due to the fostered soil584

organic matter decomposition, with larger litter amounts at the AF. This, together with a larger respiration from the trees, can585
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explain why AF2, although being surrounded by corn, did not show similar carbon uptake, as the other tower within the AF586

system.587

During the 2023 harvest period, the footprint of the MC station covered only corn, not rapeseed (Fig. 3b). Corn was still588

growing during July and August of 2023 at the MC, which explains why at the MC tower very large carbon uptake and ET589

release was retained, while AF2 and AF1 showed reduced fluxes. In winter carbon and ET weekly sums were very similar, due590

to the dormant state of the ecosystems as mentioned in the previous section. However, fluxes were very small in magnitude and591

it is difficult to attribute clear differences between sites.592

During the 2024 growing season, carbon uptake at the AF was similar to the MC, which is different to 2023. The magnitude593

of the carbon uptake at all stations was lower than in 2023. In 2024, barley was grown in the main footprint area of the MC (Fig.594

3d), as well as a portion of the rapeseed field, which did not grow well this year. In general, barley is a crop with less intense595

physiological activity than corn (Pohanková et al., 2018), which explains the smaller differences to the AF stations. Also, the596

meteorological conditions were very wet in winter with a dry spring. During the harvest period in 2024 the carbon uptake597

and ET reduced more sharply at the MC than at the AF, after the harvest of the rapeseed, because of its partially contributing598

footprint (Fig. 3e). The reduction was more pronounced after the harvest of the barley, which contributed the most to the main599

footprint covered by the station.600

Trees within the AF buffer all the effects of management practices of the crops in between tree strips, since their eco-601

physiological activity follows a clear seasonality, similar to forests in comparable climates (Anthoni et al., 2004), and might602

partially mask the effect of management in certain portions of the field. Since all three towers at the AF cover similar footprint603

areas and the western side of the stations was always predominant in the footprint climatology, only large changes in the604

source/sink behavior of the field around them can be detected. During the 2023 growing season the footprint area contributing605

to the fluxes (Fig. 3) covered corn, which was harvested at the end of September, so just a small effect on the fluxes was606

observed after the harvest of the barley at the end of August (Fig. 4). In 2024, on the other hand, the effect of harvest on a607

reduction in carbon and ET was more pronounced, because of the earlier development of barley compared to corn.608

By contrast, in the paper by Callejas-Rodelas et al. (2024), the authors compared 4 months of measurements and both carbon609

uptake and ET were enhanced at the AF during a measurement campaign from April to August 2022, conducted at the same610

site. Similar results were obtained by van Ramshorst et al. (2024), who showed an enhanced carbon uptake and ET release at611

a grassland AF system compared to a MC grassland. However, they only measured in summer, with enhanced physiological612

activity of grasses and trees. The dominant species in the footprint area of the MC stations were rapeseed in Callejas-Rodelas613

et al. (2024) and grass in van Ramshorst et al. (2024). These species are known to have a lower physiological activity as614

compared to corn (Lokupitiya et al., 2009; Zhang et al., 2014).615

4.3 Effect size and spatial representativeness of the distributed network616

The effect size d was in most cases between 0.7 and 1.3 (Fig. 7), indicating differences between the evaluated daily sums of FC617

and ET on the order of the pooled standard deviation, therefore leading to a relatively large effect size (Abdaki et al., 2024).618

The lower variability of d for LE than for FC across the whole measurement campaign relates directly to the findings discussed619
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in previous sections, e.g. the FC had the largest spatial variability most of the time. Larger spatial variation in FC influences620

daily sums which were later on used to calculate d. The increase in spatial variability of FC, which was more pronounced than621

the change in spatial variability of LE, explained the increase in d during the growing seasons of 2023 and 2024, for both the622

comparison of AF vs. MC and the comparison of the three stations at the AF.623

The larger d values calculated for the comparison between AF and MC than for the comparison between multiple towers at624

the AF (Fig. 7) can be interpreted as an effect of the larger ecosystem differences between AF and MC than within the AF. The625

differences within the AF system were a result of the small scale heterogeneity of the AF system. Because differences in means626

were larger than differences in the standard deviation, d can be interpreted such that a network of three EC towers above the627

AF allowed a better understanding of the effect of management and smaller scale disturbances inside the AF system. However,628

at the ecosystem scale comparison, AF vs. MC, the traditional approach with only one EC tower could still be sufficient to629

detect differences between the two ecosystems.630

Low values of d were typically attained during winter months. Then fluxes were small (Fig. 4), which lead to a decrease of631

both the temporal and spatial variability (Fig. 5 and 6). The small effect of heterogeneity across the sites was likely masked by632

the larger noise in the data, the longer and more frequent gaps and the larger uncertainty in the gap-filled fluxes (Section 2.3.3).633

Several studies addressed spatial representativeness of fluxes and the footprint climatology. These studies focused either in634

studying RE (Hollinger and Richardson, 2005), in separating ecosystem structure and sampling errors in the spatial variability635

of fluxes (Oren et al., 2006), in disentangling temporal and spatial variability of fluxes using a single tower approach and636

footprint modeling (Levy et al., 2020; Soegaard, 2003), in the representativeness of single point measurements at the pixel637

scale for regional to global scale models (Chasmer et al., 2009; Chen et al., 2009; Wang et al., 2016; Ran et al., 2016), or in638

studying the effect of diverse meteorological conditions in the footprint climatology and canopy structure (Abdaki et al., 2024).639

To the best of our knowledge, the study of Cunliffe et al. (2022) was the only one deploying several LC-EC setups, similar640

to the ones used in our study, and one additional conventional EC setup, to quantify the impact of landscape heterogeneity641

on turbulent fluxes. They studied a dryland site with very low flux magnitudes, different from our site, and obtained a useful642

agreement between different LC-EC and the conventional EC setups. The differences between setups were attributed to the643

heterogeneity of the ecosystem, covered by different bushes and grass species, but a less detailed analysis on spatial and644

temporal variability of fluxes was performed.645

In the EC community, EC replicates are not common (Hill et al., 2017; Stoy et al., 2023). Therefore the effect size of646

either means or sums of fluxes is typically not estimated. Hill et al. (2017), as the first paper showing the potential of LC-EC647

setups in increasing spatial replication in EC studies, estimated the effect size through the comparison of the average carbon648

sequestration and the standard deviation of the cumulative sums, for ideal and non-ideal FLUXNET sites (Baldocchi, 2014).649

In the present study, the effect size was calculated in a similar way, but based on daily sums and pooled standard deviations650

(errors) of the 30-min time series. The concept in Hill et al. (2017), therefore, was different, since the measurement errors tend651

to decrease relative to the aggregation period when cumulative sums are calculated (Moncrieff et al., 1996). Their calculated652

standard deviation was based on the uncertainty in cumulative sums of half-hourly carbon fluxes and not on time series of653

higher temporal resolution, e.g. 30 minutes. These time series are commonly characterised by higher variability. Due to this654
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difference in the time scale used in the analysis, their findings on how many towers are needed to properly sample an ecosystem655

cannot be compared to ours.656

In general, there is still an ongoing discussion on how much the landscape heterogeneity affect balances of CO2 and H2O657

measured by single EC towers. The LC-EC setups could help to bridge the gap of low spatial replication across such hetero-658

geneous sites by allowing the installation of multiple setups due to their reduced cost. This could be complementary to other659

methodologies developed, to understand the effect of spatial heterogeneity on fluxes measured from single towers, such as in660

Levy et al. (2020) or Griebel et al. (2016), or measured with several conventional EC setups (Soegaard, 2003; Hollinger et al.,661

2004; Katul et al., 1999; Oren et al., 2006).662

4.4 Footprint modeling and turbulence dynamics at the AF site663

The footprint model employed in the present study (Kljun et al., 2015) allowed to understand where the source/sink areas of664

CO2 and H2O were located, at a basic level. The implementation of the aerodynamic canopy height after Chu et al. (2018)665

helped to increase the accuracy of the footprint model to cope with the heterogeneity of the AF site. The three towers at the666

AF shared a similar footprint climatology (Fig. 3), if the 80 or 90 % area of the contributions to the footprint were considered.667

However, the most intense footprint values, which indicate the largest contribution to the measured fluxes, concentrated in668

smaller areas around the towers (Kljun et al., 2002). Therefore, most of the observed variability in the development of FC and669

LE can be attributed to the heterogeneity in the land cover around the stations, with different crops at different phenological670

stages during the campaign. The smaller variability of fluxes in winter can be attributed to the absence of crops and the671

latency state of the trees. One of the key features of the three towers network is that it allowed to disentangle the effect of672

management activities, e.g. crop harvest, therefore providing interesting insights in the smaller scale features caused by the673

alternating structure of the AF. The division of data in wind direction bins, as done in e.g. Kutsch et al. (2005), to address the674

spatial variability of fluxes, turbulence parameters and both spatial and temporal components of the variance, complemented675

the information provided by the footprint maps.676

Canopy height influences the wind speed and the dynamics of turbulence within the AF (Markwitz, 2021), and therefore677

the footprint covered by the towers (Kljun et al., 2015). The footprint area, therefore, is very sensitive to a steep change in the678

canopy elements. The increase in tree height from 2023 to 2024 led to a reduction of the footprint size and less overlap between679

them (Fig. 3). This, together with differences in crop development and meteorological conditions, contributed to an increase in680

the CVs of FC and LE, and showed the relevance of the spatial components of the variance for both flux variables.681

The parameterization implemented in the model of Kljun et al. (2015) does not allow to consider the effect of spatial hetero-682

geneity as represented by roughness length and USTAR, which are the basic parameters for an accurate footprint estimation.683

This is the main source of uncertainty for the footprint modeling in this study. Due to the structure of the AF, it is likely684

that the footprint model overestimates the footprint area, attributing the sources and sinks to areas further beyond what really685

contributes to the flux. In addition, footprint estimates are sensitive to the vertical distribution of sources and sinks along the686

canopy and to the time air parcels expend within it (Launiainen et al., 2007; Prabha et al., 2008). This is likely happening at687

this AF site, due to the structure of the tree rows. A more advanced modeling approach combining, firstly, information on flow688

28

https://doi.org/10.5194/egusphere-2025-810
Preprint. Discussion started: 11 March 2025
c© Author(s) 2025. CC BY 4.0 License.



dynamics and spatial structure, with e.g. Large Eddy Simulations, similar as performed in Markwitz (2021) and van Ramshorst689

et al. (2022), and secondly, footprint modeling by applying the procedure described in Göckede et al. (2006) to account for the690

spatial heterogeneity in roughness length and friction velocity, would provide more accurate footprint estimates. In addition,691

if the footprint climatology were aggregated based on weighted footprints, as in Chen et al. (2009), the sources and sinks of692

carbon and water vapour across the site would be characterized in more detail.693

The structure of the AF system influences the flow dynamics and therefore affects the turbulence measurements. An Internal694

Boundary Layer develops across the field, due to the obstacle represented by the edge of the tree rows (Markwitz, 2021). In the695

roughness sublayer, tree rows induce persistent waves behind them, thereby enhancing the differences in the turbulence-related696

parameters WS, USTAR, and W_SIGMA. However, the dissimilarities were not larger than for the LE or FC (Fig. 5 and 6),697

because these were controlled by the very irregular distribution of carbon and water sources/sinks, which had a larger impact698

than the variability in turbulence statistics. In addition, the canopy structure and the spatial heterogeneity at the AF could699

potentially lead to a large storage of carbon and energy. The storage terms were not accounted for, although they might be700

relevant at the edges between crops and trees and within the tree rows, which are very dense and therefore less coupled with701

the atmosphere. All of it might influence advection in horizontal and vertical directions (Mammarella et al., 2007; Aubinet702

et al., 2010; Feigenwinter et al., 2008), however, it was not possible to account for those terms with the current datasets.703

Furthermore, the sensor location bias, defined as the uncertainty caused by measuring only at one point above a hetero-704

geneous site, also depends on the stability conditions (Chen et al., 2011). Under more unstable conditions, the footprint size705

would decrease and the location bias of each of the towers would increase, better justifying the use of several EC towers to706

better sample the whole ecosystem. A more detailed study on stability regimes, footprint size and spatial variability of fluxes707

would inform on this feature, but it was not performed in this study due to the limited data availability and the difficulty in gap-708

filling turbulence parameters needed to classify stability regimes, such as Obukhov length. With longer time series and more709

complete turbulence and footprint information, some of the previously detailed shortness of this study could be addressed.710

4.4.1 Errors in FC, LE and H711

The errors that affect the flux calculation are difficult to disentangle as they propagate through the whole processing routine,712

from the raw data measurements until the final flux corrections. Therefore, the uncertainty in the use of LC-EC was assigned,713

for the measured fluxes, based on the previous inter-comparison studies of Callejas-Rodelas et al. (2024) and van Ramshorst714

et al. (2024), as detailed in Section 2.5. This procedure is similar to the approach applied in Peltola et al. (2015), where they715

used a previous instrument cross-comparison campaign (Peltola et al., 2014) to assign instrumental uncertainty to the setups716

they deployed. However, the uncertainty in the use of LC-EC, defined in relation to conventional EC, was obtained during a717

specific campaign and under specific site conditions, hence there might be a bias in the LC-EC error attribution. Additionally,718

the uncertainty in the gap-filled fluxes was calculated as explained in Section 2.5, by assigning individual errors to the 30-min719

fluxes, which can then be propagated when performing the daily cumulative sums. This was detailed as a first attempt on720

how to easily evaluate errors and propagate them through cumulative sums whenever a new EC setup has been compared to721

conventional EC setups and balances of carbon or ET are calculated using gap-filled data.722
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Focusing on the uncertainty in the gap-filling procedure, the presence of very long gaps, especially affecting tower 3 at723

the AF, would have had largely increased the uncertainty in the data (Lucas-Moffat et al., 2022) if all the time series were724

filled. Therefore, only measured data and gaps shorter than two weeks were used, which did not allow for a complete spatial725

heterogeneity study, mainly because of the missing data for AF3 during the harvest period 2023. Using the combination of both726

REddyProc for very short gaps and the XGBoost model for long gaps was the optimal solution found for this study, similar727

as done in Winck et al. (2023), and it allowed to assign individual errors to each 30-min flux, as explained in Section 2.5.728

Additionally, using more strict filtering criteria, such as a higher USTAR-threshold or a lower quality flag, would on the one729

hand provide data of better quality, but would on the other hand increase the uncertainty due to gap-filling of a higher number730

of gaps.731

We used TA, SW_IN and VPD as predictors for gap-filling, which are generally recognized as the main drivers of CO2 and732

H2O fluxes (Vekuri et al., 2023; Wutzler et al., 2018). WS was used because of its influence on the development of turbulence733

and on the spatial information carried by eddies, especially above a very rough surface such as the AF and wind direction was734

selected to account for the spatial heterogeneity across the different measurement locations of the towers (Richardson et al.,735

2006). Other meteorological variables were either less relevant for the analysis, such as atmospheric pressure, or more complex736

to gap-fill, such as net radiation.737

Random error (RE) was not considered directly in this analysis, however, it was partially accounted for indirectly when738

calculating standard deviations of the time series. In addition, RE decreases with increasing length of the datasets (Moncrieff739

et al., 1996), therefore it becomes less relevant for longer term assessment of carbon and ET balances. Also, the approach740

implemented in e.g. Richardson et al. (2006) and Hollinger and Richardson (2005) treated RE either with similar conditions in741

consecutive days, or with the approach of two independent towers, but in the present study the towers had partially overlapping742

footprints and different land covers around them, hence, cannot be considered as independent.743

5 Conclusions744

This study shows for the first time 1.5 years of measurements from a distributed network of three EC towers above a temperate745

heterogeneous agroforestry system and a comparison to an adjacent monocropping agricultural system. The use of three EC746

stations allowed to capture the spatial and temporal variability across the site, which especially affected FC. The main differ-747

ences were attributed to the different developmental stages of the crops across seasons, with larger disturbances of FC and LE748

after harvest events. Because of the high degree of spatial heterogeneity, it was important to have a broader footprint coverage749

to capture small scale differences at the AF. Furthermore, binning the data in wind direction sectors and weeks allowed us750

to have a detailed picture on the temporal and spatial components of the variance and the coefficients of spatial variation,751

given that the differences between the different stations were small enough to be masked if a less resolved analysis had been752

performed.753

Secondly, this study included a complex gap-filling procedure which complemented previously published recommendations754

on how to work with lower-cost EC data. The datasets gathered during the campaign and the processing scheme added value755
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to the data collection of the project, from previous years of measurements, above several agroforestry and monocropping sites.756

Future research will address in more detail the contrast between different agroforestry and monocropping sites, with more757

years of data and under a broader range of meteorological conditions.758

Finally, the footprint coverage required to capture the spatial heterogeneity across the AF, and within the AF and MC, was759

improved thanks to the use of lower-cost EC setups. We proved satisfactorily the hypothesis that the degree of uncertainty760

introduced by the use of slower-response gas analyzers for CO2 and H2O was counteracted by the better representation of all761

processes occurring within the AF system. Therefore, we recommend the installation of multiple EC setups, including lower-762

cost setups, anytime when the degree of heterogeneity of an ecosystem is large. An added value in future studies would be to763

compare overlapping and non-overlapping measurements in terms of footprint.764
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